
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 813
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Design Of User Level Threads For Multi-Core Pro-
cessors Implemented On FPGA

V Jean Shilpa, Dr P K Jawahar

1. Research Scholar, Department of Electronics and Communication, B.S.Abdur Rahman University, India
 2. Professor and Head, Department of Electronics and Communication, B.S. Abdur Rahman University, India

Abstract— The era of Energy efficient high performance computing seems to be increasing at a very high rate. Multi core pro-
cessors play a key role for high performance computation. Multi core processors employ the idea of spreading concurrency
through out the system. Multi – core and Multi – threaded processors both together exploit concurrency by executing multi
threads on multiple processors. Hence an operating system provides multi threads for parallel applications. Since the scheduling
process is hard coded in the operating system, it is unknown to the user. A different category of threads known as user level
threads which reside in the user mode and the one which avoid kernel context switching will be implemented on FPGA soft core
processor known as microblaze to effectively schedule threads based on the inputs from the application loaded by the user based
on priority based scheduling using Open MP API(application program interface) to enhance the scheduling capability of user
threads and allow user level threads to effectively utilize the advantage of concurrency in multi core processors and multi core
embedded processors. Implementation of user level thread parallelism on FPGA can also be effectively used for embedded. pro-
cessors which employ multi core processors.This Open MP user level multi threads will be designed using the tool XPS(Xilinx
platform Studio) and SDK(software development kit) provided by Xilinx 14.5 and implemented on microblaze soft core proces-
sor embedded in sparten 3E starter FPGA kit[4] and interfaced with the kernel to effectively utilize the advantages of multi core
processors and multi core embedded processors

Index Terms— API(Application program interface), SDK(Software development kit), TLP(thread level parallelism), XPS(Xilinx
platform studio.
—————————— ——————————

1 INTRODUCTION
Parallel computing achieved its high performance when imple-
mented on multi core processors[1]. Performance of a multi core
processors mainly depends on time it takes to execute a given
task.

Perforamce = Instruction executed per clock cycle ×

 Frequency

Hence to increase the performance increasing the instruction exe-
cuted per clock cycle and frequency concurrently is an trivial idea
but developing new architectures that support high level of paral-
lelism is essential and architectures that aid parallelism efficiently
to adapt to the increasing number of core in multi processor sys-
tem has become essential.

Especially designers working with real time application running
on multi core processors are required to provide high computa-
tional capabilities. FPGA is treated as an component or accelera-
tor that can be reused for wide range of applications[2]. It posses
the characteristic of both specialization as well as generalization

to any application. FPGA’s are embedded with processors known
as embedded processor in FPGA[3] .

Primarily ILP(instruction level parallelism technique was applied
to achieve pipelining, then the era shifted to thread level parallel-
ism which encouraged parallelism to be implemented on proces-
sor. Instead of implementing TLP on one single core this was
adapted to multi core architecture because multiple streams of
instruction can be executed on multiple processors[4]. The crea-
tion , management and scheduling of threads which is defined as
the smallest sequence of pre- programmed instruction that is in-
dependently managed by the operating system scheduler. Threads
always resides in side a process, its a light weighted process.
These threads which are created inside an operating system are
executed concurrently on multi core processors. Such kind of
threads are know as kernel level threads[5]. The next category of
threads are known as user level threads. These threads work with
the support of user thread library which reside in user application
address space. The user level threads do not interfere with the
kernel. All the threads that are created inside a user level mode
are put together as process, and they make a system call to the
operating system.This research mainly deals with developing an
user level threads on FGPA soft core processor called microblaze
to effectively schedule threads based on the inputs from the ap-
plication loaded by the user based on priority based scheduling.
This design on FPGA gets certain inputs from OS which in-
cludes, the total number of cores available, and the current status

————————————————
• V Jean Shilpa is currently pursuing PhD program in embedded system

design inB S Abdur Rahaman University,India, PH-9655537103. E-mail:
jeanshilpa@mail.com

• Dr P K Jawahar Professor and Head of the department inelectronics and
communication engineering inB.S. Abdur Rahman University,India.Email:
HOD_ECE@bsauniv.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 814
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

of the core and based on the status it will effectively schedule the
user level threads so that work has to be equally distribute to the
multiple cores to increase the over all speed and give the output
to the OS .

2. USER LEVEL THREADS ON FPGA
2.1 User Level threads
To implement parallel application operating system has
provided with kernel level threads. The burden on operat-
ing system is increasing day by day since more number of
distributed system , multi media processing etc has to be
managed by the operating system. The demand of an oper-
ating system to get adapted to the various hardware plat-
forms connected to it is the need of the hour. Also the per-
formance of any application being executed in a parallel
environment like multi core architectures mainly depends
on the capability of the scheduler present in the multi
threading unit. The different categories of scheduling main-
ly are categorized as follows: First, Multi media applica-
tions which demands real time scheduling and the quality
of service of the scheduling maily relies on the parameters
of the appilications availability. Second, Threads schedul-
ing for servers because fairness metrics of different jobs
have to be taken into consideration for efficiently schedul-
ing different jobs on the server. Third, Thread scheduling
for distributed user application which maily deal with
shared memory, message passing, because these kind of
applications block the kernel until the applications re-
sponds .Foue application threads which involve heavy
work load, a scholar which can avoid page faults and page
thrashing is nessecary.Five, threads have have very less
work load ,the nature of these threads are they are too
many in number, hence they have to efficiently occupy the
space in the cache.Hence the task of managing all the above
functions requires a good user level thread which does not
interfere with the kernel and perform scheduling by care-
fully monitoring the application behaviour in the system
and effieciently interact with the applications to kep track
of its states and the tasks the threads are supposed to full
fill. Implementing thread at the kernel level is costlier com-
pared to user level because user level threads are created at
user level mode which is operating system independent,
language independent, application independent. These
user level threads are created and maintained at the user
level threads[5][6], there is no intervention with the kernel.

2.2 Open MP

For Open MP is a portable application program interface for par-
allel programming model in multi processors with shared
memory. Open mp is an industry standard for shared memory
multi programming[7]. Open MP is a scalable and portable model
that gives multi core processors a flexible interface for the devel-
opment of parallel applications in high performance computing
areas. Open Mp works on the basic concept of Pragmas which is
otherwise known as active components which effieciently aids in
parallelizing the code. This Open MP can is not processor specif-

ic. Hence open MP is defined as a set of run time library routines,
compiler directives and environment variables which is used to
program shared memory multi core using C/C++ and Fortran.
The programming model it employs is thread based shared
memory .The variables in Open Mp can be both shared as well as
used as private variables. Parallelism in multi programming
works on the principle of fork join model.The number of threads
to be executed on the parallel region depends on the entry to the
parallel region which resides in FPGA[8]. A parent thread creates
a team of chidren thread which resides in the thread pool for re-
use in parallel programming.
2.3 FPGA FOR USER THREAD LEVEL PROGRAMMING

Field Programmable gate array are used as accelerators whose
application support can be retargeted or reconfigurable. Recently
emerging CPU and FPGA hybrid design have significant eco-
nomics to scale according to the technology needs, were signifi-
cant amount of work can be pushed to FPGA since it supports
retargetable applications, since the number of processor cores are
increasing day by by, the support given by operating system for
equally distributing the threads to multiple processor increases
and hence the burden lies on the operating system. There for to
simplify the tasl the user level threads are implemented on the
FPGA to support and provide fast threads to the processors for
computing.

2.4 FPGA EMBEDDED PROCESSORS

Embedded processors in FPGA are capable of running a full
fledged real time operating system environment[9]. With regard
to communication on board, FPGA embedded processors are well
equipped with high speed data processing, high speed converters
interfaces etc. Embedded processors in FPGA are classified as
hard core and soft core processors. The well known hard core
processor is power PC and the soft core processor is microblaze.
Hard core’s processor’s architecture are fixed that cannot be re-
configured by the user were as soft core processors known as
microblaze in Xilinx FPGA can be reconfigured according to the
preference of the user. It posses a 32 bit Harvard RISC architec-
ture.Micro blaze is a virtual microprocessor that is built by com-
bining cores inside Xilinx FPGA. The speciality of the architec-
ture of microblaze is , it can be tailored up to our needs. It has a
separate 32 bit instruction and data bus use to access program
and data from the memory. It has 32 general purpose registers,32
– bit instruction word with three operand and two addressing
modes. Special 32 bit instruction and data bus that has direct
connection to on – chip block RAM through LMB, 32 – bit ad-
dress bus,single issue pipeline, instruction and data cache, hard-
ware debug logic, fast simulink uni directional bus support. Also
it has the advantage of pipelining. The user is given full freedom
to decide on the size of cache memory, type of memory interface
and execution units. The performance of the micro blaze proces-
sor mainly depends on the processor’s configuration , speed
grade and FPGA target architecture. Tools that aid to design
these embedded processors are provided with push button board
support packages which can be generated both from XPS as well
as SDK.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 815
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.4 Xilinx Platform Studio and Software Development Kit

 XPS and SDK provided by Xilinx are very efficient tool for
hardware and software integration. The product version of Xilinx
used in our project is EDK 14.5, a new board support package
environment is created, in which PLB(Processor local bus) which
is a bus standard used with FPGA, the target board that is choose
is Xilinx Sparten 3E Starter kit[10], the tool gives an option to

Fig 1: Block Diagram of Micro Blaze embedded processor

select between single core or dual core processors, we have
choose sinlge core processor to implement the user thread unit.,
the frequency we have selected is 50 Hz and the processor is mi-
croblaze, the tool gives us the flexibility to vary the size of cache
memory which supports the microblaze processor, hence 32KB is
initially selected, the tool gives us the option of selecting other
peripheral devices if required to be connected to the processor,
here we have selected LMB(local memory bus).

Xilinx platform studio is a tool provided by Xilinx to design
hardware portion of the embedded system. The system is built
from the predefined libraryfor the cores. Tool provides the ability
to integrate IP cores. The sytem constructed here includes a mic-
blaze processor, local memory bus, fast simplex link, processor
local bus. The lmb bus is used to control the dlmb controller and
the ilmb control modules here microblaze processor acts as mas-
ter and other modules acts as slave. The PLB bus aids in connect-
ing the RS232 component to microblaze processor. Once the
netlist and bitstreams are generated directly the software devel-
opment kit(SDK) of Xilinx is launched from XPS which takes
the hardware platform created. Three main files are exported
from XPS, system.xml contains the details of the IP cores, system
.bit caontains the programming file for FPGA and system .bmm
file contains the information need by SDK to launch memory in
the target board. In the software development kit of Xilinx a C
project to create threads is developed, the header files included
are as follows

#include<stdio.h>
#include <omp.h>
#include <xparameters.h>

Stdio.h and omp.h are the header files included to develop the
threads creating program where in openmp is used to develop an
API for writing multi threaded applications, xparameters.h file
contains system parameters for the Xilinx device drivers envi-
ronment.It gives the over all information about the number of
devices in the system, memory map and parameters for each de-
vices. The board support package (BSP) is exported from XPS to
SDK which contains the nessecary library and the drivers form
the lowest layer of application software stack. Hence the software
application developed for threads creation and management runs
on the board support package using the provided application pro-
gram interface. After the software is developed again the board
support package settings can be modified by system.mss.

Design Flow :
The Embedded Development kit provided by Xilinx enables to
integrated hardware and software co- design using C/C++ lan-
guages or hardware description languages given in Fig 2.From
the hardware side first the platform kit along with its board sup-
port package is selected. The peripherals, cache memory, external
memory , the bus architecture etc are selected to support the
hardware design and the corresponding hdl file is generated
which contains the hdl code for the platform designed. The hdl
code is furthered synthesized into gate level netlist and then
matched to primitives mapped on to the specific device resources
such as flip flops, look up tables and block memories. The inter-
connections and location and followed int he placement and rout-
ing step. The .bit file downloaded file or file which is exported to
software development kit is generated. The software code written
in C is compile along with the required header files which was
previously mentioned and converted into executable and linkable
format known as elf file. The other two files known as micropro-
cessor hardware specification. Mhs and microprocessor software
specification .mss file specify the hardware connections and
software structure of the system.The whole system runs on a real
time operating system.

Fig2 : Xilinx EDK Flow Diagram
3 Experimental Results

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 816
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

An application to develop multi threads on microblaze was writ-
ten in embedded C program with the supporting hardware plat-
form created in XPS and application of creating these multi
threads was designed and developed in SDK and the correspond-
ing files generated as well as the netlist,the IP core and the output
generated when the design was downloaded to FPGA are given
below The overall summary of the microblaze processor memory
system generated by the tool is given below. The list of IP blocks
present in the design are microblaze, mb_plb, ilmb, dlmb,
lmb_bram, rs232, clock_generator, proceesor_system_reset.um.

TABLE 1
Memory System file generated

Core
Name

Instance name Base Ad-
dress

High Ad-
dress

Processor
1

microblazr

Lmb bram
if cntlr

Dlmb cntlr 0x0000000
0

0x00007FF
F

Lmb bram
if cntlr

Ilmb cntlr 0x0000000
0

0x00007FF
F

Xps bram
if cntlr

Xps bram if cntlr
0

0x83A1800
0

0x83A19F
FF

Xps_timeb
ase_wdt

Xps_timebase_w
dt 0

0x83A0000
0

0x83A0FF
FF

Xps timer Xps timer 0 0x83C0000
0

0x83C0FF
FF

TABLE 2

Netlist and Bitstream file generated

Report XPS Synthesis Report
Flip Flops
Used

LUT’s
used

BRAM’s
used

System 1870 2568 8
System Clock
generator wrapper

4 1 -

System mdm
wrapper

152 382

System plb wrap-
per

126 143

System microblaze
wrapper

1366 1834

System rs232 147 137

TABLE 3
The Board support package file generated

Configuration for
OS : Standalone
Name

Board Support Package
Value Type Description

Stdin rs232 peripherals Stdin periph-
eral

stdout rs232 peripherals Stdout pe-
ripherals

compiler mb-gcc string Compiler
used to com-
pile both

BSP/ library
and applica-
tions

The output generated in the console window of Xilinx SDK is
shown below

Hello World from thread = 0
Hello World from thread = 1
Hello World from thread = 2
Number of threads = 3
Hello World from thread = 4
Hello World from thread = 5
Hello World from thread = 6
Hello World from thread = 7
Hello World from thread = 8
The output clearly indicates that new threads to be created on
multicore processor are created and ported to microblaze proces-
sor, futher the entire thread scheduling unit to support thread
scheduling of multi core processors will be entirely designed and
ported to microblaze and the same architecture will aid the multi
core processors.

REFERENCES
[1] David A. Bader, Varun Kanade and Kamesh Madduri,” A

Parallel Programming Framework for Multicore Proces-
sors”,Parallel and distributed Computer Architecture,IEEE
Conference, 2007.

[2] Wadiyasoorya ,Hastikka “FPGA Implementation of hetero-
genous multi core platform with SIMD / MIMD custom ac-
celerators” Circuits and System,IEEE,2012

[3] Xilinx Inc. MicroBlaze Reference Manual, version 10.1
[4] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahl-

ke, “Extending Multicore Architectures to Exploit Hybrid
Parallelism in Single-thread Applications“,High perfor-
mance Computer Architecture,IEEE,2007.

[5] Thomas Riechmann , Jürgen Kleinöder, “User-Level
Scheduling with Kernel Threads “Citeseer,1996

[6] Multi-threading: concepts and application tuning, Technical
white paper,Multi-threading: concepts and application tun-
ing 2, HP OpenVMS technical journal V19

[7] “The OpenMP API specification”, www.openmp.org .
[8] Daniel Cabrera, Xavier Martorell, Georgi Gaydadjiev, Edu-

ard Ayguade, Daniel Jim´enez-Gonz´alez OpenMP exten-
sions for FPGA Accelerators, Reconfigurable Computing,
SAMOS'09 Proceedings of the 9th international conference
on Systems, architectures, modeling and simulation pag-
es17-24 IEEE Press Piscataway, ©2009

[9] Bryan H. Fletcher, “FPGA Embedded Processors Revealing
True System Performance Embedded Systems Conference
San Francisco 2005

[10] Spartan-3 Starter Kit Board User Guide, Xilinx, Inc.
[11] P. Waldeck, N. Bergmann, “Evaluating software and

hardware implementations of signal-processing tasks in an
FPGA”, Proceedings - 2004 IEEE International

Conference on Field-Programmable Technology,FPT

'04, pp. 299-302.

IJSER

http://www.ijser.org/
http://www.openmp.org/

	1 Introduction
	2.1 User Level threads

	References

